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ABSTRACT: In this paper an Adaptive Neuro-Fuzzy Controller was designed to adaptively adjust the parameters 
of a power Oscillation Damper as the power system operating point changes due to change in operating point in a 
large interconnected Network fitted with FACTS device and Power Oscillation Damper. As a foundational work the 
generalized mathematic model of multi-machine power system with embedded FACTS was developed. The results 
obtained clearly reveals the effectiveness of this approach 

——————————      —————————— 
 

I. INTRODUCTION 

    Most of the FACTS based damping controllers belong to the PI (Proportional + Integral) type 
and work effectively in single machine system [1]. However, the performance of the above 
mentioned damping controllers deteriorates in multi-machine power systems. The damping 
performance of the FACTS based damping controllers in multi-machine power systems can be 
improved by using fuzzy coordinated design [2]. Furthermore Power Oscillation Damper are 
designed for specific operating point, but operating point changes as demand changes for optimal 
performance the parameter of power oscillation damper must continually change with changes in 
operating point for this reason ANFIS is deployed to predict the future values of POD parameters 
based on large population of such parameters obtained from all possible operating scenarios. The 
structure of the proposed Adaptive Neuro Fuzzy coordinated controller is shown in Figure 1, where 
the inputs are speed deviation of synchronous machines and their acceleration. Thus, the 
conventional damping controllers are adaptively tuned by using ANFIS controllers.  
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Figure 1:  Proposed Adaptive POD Controller 
II. LITERATURE REVIEW 
    An attempt has been made to apply hybrid neuro-fuzzy approach for the coordination between 
the conventional power oscillation damping (POD) controllers for multi-machine power systems. 
With the help of MATLAB, a class of adaptive networks, that are functionally equivalent to fuzzy 
inference systems, is proposed. The proposed architecture is referred to as ANFIS (Adaptive Neuro-
Fuzzy Inference System) [2]-[6]. An adaptive fuzzy inference system (ANFIS) based UPFC 
supplementary damping controller to superimpose the damping function on the control signal of 
UPFC for damping of power system electromechanical oscillations was proposed in [7]-[8]. 
    The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. Using a 
given input/output data set, the toolbox function ANFIS constructs a fuzzy inference system (FIS) 
whose membership function parameters are tuned (adjusted) using either a back propagation 
algorithm alone, or in combination with a least squares type of method. This allows fuzzy systems 
to learn from the data they are modeling [8]. It has a network-type structure similar to that of a 
neural network. Thus, it maps inputs through input membership functions and associated 
parameters and then through output membership functions and associated parameters to outputs, 
can be used to interpret the input/output map. The parameters associated with the membership 
functions will change through the learning process. The computation of these parameters (or their 
adjustment) is facilitated by a gradient vector, which provides a measure of how well the fuzzy 
inference system is modeling the input/output data for a given set of parameters [9]-[10]. Once the 
gradient vector is obtained, any of several optimization routines could be applied in order to adjust 
the parameters so as to reduce some error measure (usually defined by the sum of the squared 
difference between actual and desired outputs) [11]-[12].  

III. PROPOSED METHOD 
A.       Fuzzy System Modeling and Controller Philosophy 
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Figure 2: An unknown System as a Black Box 

In the unknown system in Figure 2 only a set of input, 𝑥𝑥1 … … 𝑥𝑥𝑛𝑛  and output 𝑦𝑦1 … … 𝑦𝑦𝑛𝑛  can be 
measured. The mathematical description relating the input to the output can be a mathematical 
formula, such as a mapping or a function that relates the input to the output in the form 

                                             𝑦𝑦1 = 𝑓𝑓1(𝑥𝑥1 … … … … … 𝑥𝑥𝑛𝑛) 
                                             ⋮                    ⋮                                         (3.49) 
                                            𝑦𝑦𝑚𝑚 = 𝑓𝑓𝑚𝑚(𝑥𝑥1 … … … … … 𝑥𝑥𝑛𝑛)   

or a set of differential equations in the form 
                                        𝑦𝑦1 = 𝑔𝑔1(𝑥𝑥1 … … . , 𝑥𝑥𝑛𝑛 , �̇�𝑥1 … … … , �̇�𝑥𝑛𝑛)  
                                                ⋮                       (3.50)                                    
                                           𝑦𝑦𝑚𝑚 = 𝑔𝑔𝑚𝑚 (𝑥𝑥1 … … . , 𝑥𝑥𝑛𝑛 , �̇�𝑥1 … … … , �̇�𝑥𝑛𝑛) 
  
 
or a logical linguistic statement which can be quantified mathematically in the form: 
                      IF (input  𝑥𝑥1) AND …AND (input 𝑥𝑥𝑛𝑛  )                    (3.51) 
                     THEN (output 𝑦𝑦1) AND …. AND (output 𝑦𝑦𝑚𝑚 ) 

Fuzzy systems modeling is to quantify the logical form of equation (3.51) by using Fuzzy logic and 
the mathematical functional model of equation (3.49) or by using Fuzzy logic together with the 
differential equation model of equation (3.50). 
The fuzzy logic controller comprises of four stages: fuzzification, a knowledge base, decision 
making and defuzzification. The fuzzification interface converts input data into suitable linguistic 
values that can be viewed as label fuzzy sets. To obtain a deterministic control action, a 
defuzzification strategy is required. Defuzzification is a mapping from a space of fuzzy control 
actions defined over an output universe of discourse into a space of nonfuzzy (crisp) control 
actions. The defuzzification of the variables into crisp outputs is tested by using the weighted 
average method. 
After generating the fuzzy inference, the generated information describing the model’s structure and 
parameters of both the input and output variables are used in the ANFIS training phase. This 
information will be fine-tuned by applying the hybrid learning or the backpropagation schemes. The 
algorithm employed for ANFIS training is shown in Figure 3. 
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Figure 3: Flowchart of ANFIS Training 

 
 
 
 
 

IV. RESULTS AND DISCUSSIONS 
 

Power Oscillation Dampers were designed for UPFC embedded in two test case study systems: 
a) Kundur Two Area System 
b) Nigerian 330kV National Grid 
However the optimal performance of these PODs are only guaranteed at the particular operating 
points under consideration, but at any other operating points, different values of time constant 
must be determined for the damping to be effective 
 

A.     Result of ANFIS Training (Test System 1) 
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The training data and check data are generated by randomly varying the load (multiplying the load 
with a factor of 0.1) in the two areas of the test system. At each operating point the actual values of 
POD parameters T1 and T2 were calculated. The ANFIS parameter settings are as shown in Table 1. 
Fig 4 is the plot of training data and ANFIS output for lead time constant while Figure 5 is the 
graph of check data and ANFIS output for lead time constant. The plot of the error associated with 
the training is shown in Figure 6 for both the check data and training data. The corresponding plots 
for lag time constant are shown in Figures 7 to Figure 9. 

Table 1: ANFIS Parameter Settings 
numMFs 5 
mfType 'gbellmf' 
epoch_n 20 

 

 
Figure 4: Training Data and ANFIS Output: Lead Time Constant 

 
Figure 5: Check Data and ANFIS Output: Lead Time Constant 
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Figure 6: Prediction Error for Training Data and Check Data: Lead Time Constant 

 

 
Figure 7: Training Data and ANFIS Output: Lag Time Constant 

 

 
Figure 8: Check Data and ANFIS Output: Lag Time Constant 
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Figure 9: Prediction Error for Training Data and Check Data: Lag Time Constant 

 
B.     Result of ANFIS Training (Test System 2) 

        The data for training were obtained by randomly varying the load in different areas by a factor 
of 0.01 from low to medium and high values for about 500 scenarios, the data were divided into 
training data and check data. The lead-lag time constants were recorded as they change with 
operating conditions as well as the lead and lag time constants that provide the best damping under 
different operating conditions. The results obtained for lag time constant are as shown in Figures 10 
to 12. Figure 13 to 14 are the corresponding results for lead time constant. Figure 15 is the graph of 
the input membership function while Figures 16 and 17 are the graphs of the ANFIS adjusted 
membership function that gives the exact simulation of the training data for the lag time constant 
and lead time constant respectively. 
 

 

 
Figure 10: Plot of ANFIS Data and Training Data: Lag Time Constant 
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Figure 11: Plot of ANFIS Data and Check Data: Lag Time Constant 

 
 

 
                        Figure 12: Prediction Error for Training Data and Check Data 
 

 
Figure 13: Plot of ANFIS Output and Training Data: Lead Time Constant 
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Figure 14: Plot of ANFIS Data and Check Data: Lead Time Constant 

 
Figure 15: Prediction Error for Training Data and Check Data 

 

 
Figure 16: Input Membership Function 
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Figure 17: ANFIS Adjusted Membership Function: Lag Time Constant 

 

 
Figure 18: ANFIS Adjusted Membership Function: Lead Time Constant 

 
V. CONCLUSION 

 
       In this work an adaptive neuro fuzzy controller has been developed for the purpose of 
coordinating the changes in power oscillation damper parameters with variation in power system 
operating point. The accuracy with which the controller was able to predict the values of POD 
parameters clearly reveals the effectiveness of the proposed approach 
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